Frame level noise classification in mobile environments
نویسندگان
چکیده
Background environmental noises degrade the performance of speech-processing systems (e.g. speech coding, speech recognition). By modifying the processing according to the type of background noise, the performance can be enhanced. This requires noise classification. In this work, four pattern-recognition frameworks have been used to design noise classification algorithms. Classification is done on a frame-by-frame basis (e.g. once every 20 ms). Five commonly encountered noises in mobile telephony (i.e. car, street, babble, factory, and bus) have been considered in our study. Our experimental results show that the Line Spectral Frequencies (LSFs), derived from the linear prediction coefficients, are robust features in distinguishing different classes of noises.
منابع مشابه
Mobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملSpeech/non-speech classification using multiple features for robust endpoint detection
In this paper, we describe a new speech/non-speech classification method that improves the endpoint detection performance for speech recognition in noisy environments. The proposed method uses multiple features to increase the robustness in noisy environments, and the classification and regression tree(CART) technique is applied to effectively combine these multiple features for classification ...
متن کاملAssessment of Noise Effect on Employee Comfort in an Open-Plan Office: Validation of an Assessment Questionnaire
Background: Today, open-plan offices are among the most common work environments. Although the noise in these environments is usually below the standard level, it is one of the critical annoyance factors due to the nature of the mental work. Accordingly, this study aimed to assess noise effects on employee comfort and validate the Persian version of the assessment of noise effects on employee c...
متن کامل